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TECHNICAL MEMORANDUM 1353 

SOME PR0BL;EMS ON THE THEORY OF CREEP* 

By Y. N. Rabotnov 

Section 1. The term creep of metals i s  applied t o  the phenomenon i n  
which, at temperatures beyond a certain l i m i t ,  the  metal subjected t o  a 
load slowly undergoes deformation w i t h  time. For the case of s tee l ,  the  
creep phenomenon must be taken in to  account a t  temperatures above 4000 C. 
Very slow deformations for  a prolonged period are  cumulative and lead 
e i ther  t o  inadmissible changes i n  the dimensions of a s t ruc tura l  par t  or 
t o  i t s  f a i lu re .  

It i s  important t o  note tha t  fa i lure  due t o  creep occurs fo r  very 
small s t r a ins  considerably l e s s  than those i n  s ta t ic  rupture. 

b 

In  the design of steam power units,  boi lers  and turbines, creep is  
a basic factor  which determines the choice of the admissible s t resses .  
On account of the extreme urgency of the problem, the creep phenomenon 
has claimed the widest a t ten t ion  of metallurgists, physicists,  and t o  a 
lesser  extent, technicians. 

A t  the same time, however, the theory of creep consti tutes par t  of 
the mechanics of dense media and the mechanical formulation of the pro- 
blem may be given as the following: 

A body i s  subjected t o  the action of a given system of forces, or 
i n i t i a l  displacements are  prescribed on i t s  surface. 
f ind  the  s t r e s s  dis t r ibut ion i n  the body and the changes of i t s  defor- 
mations with time. 

It i s  required t o  

Such a statement of the problem immediately raises  the following 
question: 
character is t ics  of creep (cer ta in  constants or functions) may be deter- 
mined? 
accepted methods of tes t ing,  or is it necessary t o  supplement them? 

What t e s t s  should be se t  up i n  order tha t  the mechanical 

Is it suf'ficient for  t h i s  purpose t o  make use of the generally 

For the solution of the problemof creep as thus formulated, a 
mechanical theory of creep i s  required. 
s t a t e  of knowledge of the physics of the process, must necessarily bear 

Such theory, a t  the present 

*"Nekotorye Voprosy Teorii Polzuchesti ." Vestnik Moskovskovo 
Universiteta, No. 10, 1948, pp. 81-91. 
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an external, over-all  character based, not on the invest igat ion of 
microprocesses, but on the  r e s u l t s  of mechanical t e s t s .  
physical theories are as yet  far from providing a quant i ta t ive descrip- 
t i o n  of the process i n  a l l  i t s  complication. 

0 

The exis t ing 

The usual method of creep t e s t s  i s  t h a t  of obtaining the  s t r a ins  
f o r  a constant load.  For small deformations it may be assumed tha t  t o  a 
constant load there  corresponds a constant s t r e s s .  

pu 
0, 
VI 
CN The results of t e s t s  are generally represented i n  the  form of creep 

curves ( f ig .  l), the  time being la id  off on the  axis of abscissas and the 
s t r a i n  E on the axis  of ordinates. 

The intercept  c 0  represents e l a s t i c  deformation i f  the  stress 0 

does not exceed the e l a s t i c  l imi t  of t he  material. Often i n  place of 
the  t o t a l  s t r a i n  there  i s  l a i d  off the  p l a s t i c  s t r a i n  

Many attempts have been made t o  give an ana ly t ica l  expression fo r  4 

the  creep curves. 
two groups: 

The d i f fe ren t  equations proposed may be divided in to  

. 
1. p = S(a)T( t )  

2.  p = g ( a ) e ( t >  + s ( a ) t  (e(..) = 1) 

I n  w r i t i n g  equation (1.2), the  e s sen t i a l  assumption i s  t h a t  the r a t e  of 
creep tends towards a constant value with t i m e ,  t h a t  is, the  creep curve 
has an asymptote. The function g(a)  i s  t h e  intercept  E' on f igure 1. 
For t h e  function S(a), the  following equations have been proposed: 

S ( U )  = Aan (Bailey) 

~ ( a )  = ve (Ludwik) 

~ ( a )  = v(ea/p - 1) (Soderberg) 

(Nadai ) C S(U) = 2v sh - 
P 

S(a) = baea/p (Oding) 
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For the function 
t i on  

T ( t ) ,  the  best  equation is  apparently the  power equa- 

T ( t )  = tm 

If equations of type (1.2) a re  used, the function 

(0 C m C 1) 

e ( t )  assumes 
the  following forms: 

t 
a s t  e ( t )  = - 

For g(u),  it has not as yet been possible t o  es tabl ish a l a w .  

The ser ies  of creep curves f o r  different  values of u give the 
representation of the functional relations between the  three variables 
u, E ,  and t. If E and u are l a i d  off on the coordinate axes, a 
ser ies  of curves i s  obtained, which i s  shown i n  f igure  2 and character- 
i zedby  d i f fe ren t  values of t. Figure 2 r e fe r s  t o  the t e s t  data of 
Robinson which a re  unique i n  t h a t  these t e s t s  extended f o r  100,000 hours 
(from March 27, 1931 t o  October 8, 1942).  
number of the t e s t s  i n  the ser ies  by t h i s  method and obtained i n  all. 
cases, w i t h  an accuracy not exceeding the limits of the experimental 
accuracy, a f f ine ly  re la ted  curves i n  the uc plane. 

W e  worked over a very la rge  

On the  basis of t h i s  resu l t ,  the  following formula describing the  
l a w  of creep f o r  constant s t r e s s  i s  proposed: 

(?(E) = r1 + G ( t ) ]  0 (1.3) 

For the  function G ( t ) ,  good r e su l t s  are generally given by the following 
expression: 

where the  coefficient 
coeff ic ient  X changes very strongly f o r  different  materials. 

a f luctuates  about the value 0.7, while the 

The sca t t e r  i n  transferring all the points on t o  the  curve t = 0 
( f ig .  2 )  is  found t o  be not greater than the scatter of the modulus of 
e l a s t i c i t y  of the specimens on which the given ser ies  of t e s t s  was con- 
ducted. 
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Section 2.  The mechanical theory of creep f o r  the case of a single 
axis must es tabl ish such re la t ion  between € and u, containing the  
time or time operators, which would permit predicting the course of the 
process varying w i t h  t i m e .  In par t icular ,  a second extreme case of the 
one-dimensional problem is the. problem of relaxation. 
process of decrease i n  s t r e s s  i n  a rod the length of which remains con- 
s tant .  
of value which, together with the  curves of relaxation, give the curves 

l i t e r a tu re  are  

6 

The l a t t e r  i s  the 

Test data on relaxation a re  very meager, only those data being 
Po 

cn w 
of creep fo r  the same material.. The only re l iab le  data i n  the general (2, 

those published by Davis i n  1943 on copper. 

The various mechanical theories of creep existing at the present 
time may be divided in to  three groups: 

(1) Theory of constant ra te :  Assuming the existence of an asymp- 
t o t i c  curve of creep, the curve i s  replaced by a s t ra ight  l i n e  pa ra l l e l  
t o  the asymptote and intercepting the segment on the  axis of 
ordinates. Then 

f o  = €/E 

6 = s(a> 4 

The theory of constant r a t e  assumes t h i s  as the t rue  r e l a t ion  f o r  any 
conditions. 
t i o n  (2.1) there i s  readi ly  obtained the l a w  of relaxation which grossly 
contradicts t e s t  data, since the neglect of the primary creep ( the  curvi- 
l inear  part of the curve 
relaxation. 
leads t o  very great d i f f i cu l t i e s  and even the problem of the pure bending 
of a rod of rectangular cross section i s  not solvable. 

In par t icular ,  f o r  E = constant, 6 = -5/E, and from equa- % 

e t )  is  not permissible i n  the problem of 
In the case of the nonuniform s t r e s s  s t a t e ,  equation (2.1)  

The greater number of authors employing t h i s  theory take s t i l l  
another step and neglect the e l a s t i c  deformation. The fundamental equa- 
t ion  i s  then the folllowing: 

Equation (2.2)  i s  generally put a t  the basis of the  theory of sec- 
ondary creep widely applied i n  technical. computations. Below sha l l  be 
given another basis f o r  t h i s  theory which considerably generalizes it. 
For the present we may note tha t  from the point of view of equation (2.2)  
the problem of relaxation has no significance. 

( 2 )  Theory of aging: The theory of aging postulates the existence 
of a def in i te  r e l a t ion  between u, E, and t: 
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c 

or between 5 ,  u, t 

f ( ( T , € ,  t )  = 0 (2.3) 

3 It i.s eas i ly  shown that any theory, the fundamental equation of which 
contains the time expl ic i t ly ,  is  contradictory. The physical l a w  must 
be invariant r e l a t ive  t o  a time origin. Applying the theory of aging 
t o  the successive loading and unloading may yield absurd resu l t s .  

(D 
03 

The theory of aging in  the form of equation (2.3), however, gives 
f o r  smoothly varying loads sat isfactory agreement w i t h  experiment. 
methods of computation based on it a re  re la t ive ly  simple and a t  the same 
time permit taking into account a l l  the character is t ic  experimental 
curves which may be obtained i n  t e s t s .  
the aging theory can be recommended as a technical method of computing 
s t ruc tu ra l  parts working under the  conditions of high temperatures. 
point of view has been developed by us in a paper presented at the 
session of the Soviet Academy of Sciences i n  March 1948. 

The 

Hence, one of the variants of 

This 

* (3) Theory of s t r a i n  hardening: This theory postulates the exis t -  
ence of an unvarying re la t ion  among the r a t e  of p l a s t i c  deformation, its 
magnitude, and the magnitude of the stress:  

Methods exist f o r  the graphical construction of the relaxation curve 
by a given family of creep curves on the basis of hypothesis (2.5) .  The 
analytical formulation of t h i s  theory, the choice of the functional 
re la t ions  for  which it is possible t o  integrate equation (2.5) ,  i s  found 
t o  be very diff icul t .  

Section 3. The theories of creep enumerated i n  section 2 are not 
capable of explaining a nuniber of phenomena observed during experinent. 
There is f irst  of all the  case f o r  the strain-hardening effect .  A 
specimen i n i t i a l l y  strained by a large force evidences creep t o  a con- 
siderably less extent than a specimen not i n i t i a l l y  strained. 
specimen was  tes ted under s t r e s s  u1 and ul i s  decreased t o  a2, the 
creep prac t ica l ly  vanishes. If, however, the s t r e s s  a2 was i n i t i a l l y  
imposed, the creep for  t h i s  s t ress  may be very marked. 
serious investigations of t h i s  problem i n  the l i t e r a tu re .  The published 

quant i ta t ive aspect s t i l l  awaits investigation. 

If the 

There are no 

. data undoubtedly give a qual i ta t ive account of the phenomenon but the 

0 
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The second effect  i s  the so-called reverse creep. If a specimen is  
subjected t o  a creep t e s t  at  constant load and the load is  then removed, 
the specimen M e d i a t e l y  shortens by the amount of the  e l a s t i c  elongation 

continues t o  shorten, returning i n  t h i s  way a par t  of i t s  residual  
deformation. 
subjected t o  a careful experimental study but not one of the previously 
enumerated theories provides an explanation f o r  it. 

but the process does not stop there. In the course of t h e  the  specimen 4 

This phenomenon of the type of e l a s t i c  a f te ref fec t  has been 

The theory of creep proposed by us represents an extension of the 
theory of elastic heredity of Volterra t o  p l a s t i c  deformation. In the 
same way as the e l a s t i c  heredity develops about a s t ra ight  l i n e  
i n  the uE plane, the p l a s t i c  heredity, or creep, develops about a 
cer ta in  curve i n  t h i s  plane. 
t o  l a y  off as usual the value of the s t r e s s  
we sha l l  therefore take a cer ta in  f ic t i tuous  plane C p €  and a curve 
cp=  c p ( ~ )  i n  t h i s  plane ( f ig .  4 ) .  

u = EE 

It will be inconvenient, i n  what follows, 
u on the ordinate axis  lend 

N 
m 
ul w 

The curve Cp(€) represents the ideal  curve of s t r a i n  with the 
exclusion of the time factor  (actually never real ized) .  For active 
processes, tha t  is ,  those accompanied by motion along t h i s  curve upward, 
the fundamental l a w  is writ ten i n  the following manner: 

4 

( P ( E )  = (1 + K*) o (3.1) 

where K *  i s  the integral  operator of Volterra, tha t  is, 

K*o -1 K ( t  - 7) u(T) dT 

Here and i n  what follows, use w i l l  be made of the notations and 
r e su l t s  of our previous paper ( ref .  1). 

The increase i n  the s t r e s s  
ac t iv i ty  of the process as i n  the theory of p l a s t i c i t y  but such cr i te r ion  
i s  given by the increase i n  E .  

cr i s  no longer a c r i t e r ion  of the 

For unloading processes, it i s  necessary i n  the left-hand side of 
equation (3.1) t o  introduce i n  place of 
of the l inear  unloading AB expressed as a function of E :  

Cp(E) the  value of the ordinate 

E (€ - E ' )  +rp '  = (1 + K*) 0 ( 3 . 2 )  . 
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If I'* i s  the solving operator, 

= 1 - r* 1 
1 + K* 

there  follows from equation (3.1) 

(J = (1 - r*) c&) 

Setting 

the l a w  of creep w i l l  then be 

b 
and the  l a w  of relaxation 

Equation (3.3) ent i re ly  agrees w i t h  t ha t  obtained from t e s t s ,  for- 

K* possesses a s ingular i ty  of the  type of the Abel operator. 
mula (1.3). The expression given i n  section 1 fo r  G ( t )  shows tha t  the 
operator 
In  the simplest case we may assume 

where I*,u i s  an operator with kernel (t  - T)''/r(l-u). Introducing 
the 3-operators employed i n  the previously c i ted  paper ( re f .  1) yields 
a very close agreement with t e s t  resul ts ,  since the 3-operator contains 
an additional constant. [NACA Reviewer's Note: The 3-operator i s  an 

41-1 
operator with the kernel 3u(P, t - T )  = (t - 

::(: - T ) ) (  )J n + l  l + a  
0 

The additional constant referred t o  i s  P . ]  

If, as i s  usually the actual  case, the body i s  acted upon by con- 
s tan t  loads or the displacement of i t s  points i s  maintained by constant 

functions G ( t )  and R ( t )  which may be determined from t e s t s  forgett ing 
a stresses, it i s  necessary i n  actual  computation t o  deal with the two 
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about the i r  or igin from the kernel and as resolvents of the same inte- 
g r a l  equation. 

This  variant of the technical theory of creep is  a forward s tep as a 

compared with the aging theory which retains  equation (3.3) both fo r  
creep and f o r  relaxation. 

The phenomenon of reverse creep (f ig .  5) w i l l  now be considered. A 
s t r e s s  u is applied t o  the specimen and it undergoes the instantaneous 
deformation u/E (point A); i n  the course of time T, creep o c p r s  along 
the curve AB; at the instant T the s t r e s s  i s  removed and a t  the same 
time there is removed the e l a s t i c  deformation I n  the 
time elapsed 8 a f t e r  the unloading there  i s  a l so  removed the defor- 
mation c r  (point D) . This process w i l l  be followed i n  the plane CP€ 
( f ig .  6 ) .  

BC = OA = a/E. 

The instantaneously applied load corresponds t o  the motion along 

up t o  point B; the  creep process i s  described 
the curve from point 0 t o  point A; during time T the s t r a i n  increases 
and the function (P(E) 
by equation (3.1). A t  point B 

0 

With instantaneous unloading we drop t o  point C on the segment 
BC = AO, the  reverse creep corresponding t o  the motion along t h i s  l i n e  
up t o  the point D at  instant 
in te res t  t o  examine the e f fec t  of an instantaneous increase i n  load 
occurring a f t e r  a period of constant-stress creep. IT Eo is  the s t r a i n  
at  the end of the creep period and 8~ 
s t r a i n  increment, then, according t o  equation (3.1), there i s  an 
instantaneous s t r e s s  increment given by 

8. [ NACA Reviewer's Note: It i s  a l so  of 

i s  an instantaneously imposed 

This resu l t  may be at variance with the fac ts ,  fo r  recent experimental 
evidence, including t e s t s  on the propagation of p l a s t i c  waves i n  bars 
subject t o  creep, suggests tha t  a f t e r  some creep has taken place materials 
behave e l a s t i ca l ly  fo r  smal l  instantaneous increments of s t ress ,  tha t  is ,  

. 
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Only fo r  suf f ic ien t ly  sma l l  
t i o n  (b).] Here equation (3.2) must be used: 

Eo would equation (a) reduce t o  equa- 

E (e - EB) +‘pg = [G(T + e )  - G ( 8 ) ]  u (3.6) 

, 
I 
I 

9 

[NACA Reviewer’s Note: The coefficient 0 i n  equation (3.6) was 
incorrectly omitted i n  the original.] 

It i s  seen from f igure 6 tha t  

U 
E, = CB - - - E  E 

Making use of equations (3.5) and (3.6) yields  

% = a E F ( T )  + G ( 8 )  - G(T + 6 4  (3 .7)  

The l inear  dependence,of the  reverse creep on the s t r e s s  and the 
symmetry of i t s  dependence on T and 8 is  well confirmed by experi- 
ment (ref. 2 ) .  

An ipportant par t icular  case of the r e l a t ion  (3.1) i s  obtained when 
cp(c) = ac, and K* =XI*-,. The l a w  of creep i s  then 

For la rge  t, the second t e r m  i n  the  brackets is  the dominating one and 

where 

1-a 
P 

1 
n = F ,  m = -  

If 1 - a = P ,  formula (3.8) gives, i n  the l i m i t ,  a constant creep 
ra te .  

Section 4. The application of the theory presented i n  the preceding 
section t o  the problem of pure bending i s  considered herein. For s i m -  
p l i c i ty ,  w e  r e s t r i c t  ourselves t o  the case of a rod of rectangular cross 
section, since we are  concerned w i t h  the theoret ical  s ide of the problem. 
Assuming the hypothesis of plane sections, s e t  
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E = z/p w 

where p i s  the  radius of curvature of the bent axis, and z the  N 

coordinate measured from the neutral  axis and varying from -h t o  +h. 

By equation (3.1) 

(1 + K*) (5 = q(;) (4.1) 

Multiplying by bzdz, where b i s  the width of t he  section, we 
z = h, and multiply the  r e s u l t  by 2 ( the integrate from z = 0 t o  

functiop c p ( c )  i s  analyt ical ly  determined only f o r  posi t ive values of 
the  argument; it i s  continued as an odd function i n  the region of nega- 
t i v e  values). Since the  time and space operators are interchangeable, 

P h  

Jo ~ ( f )  zd= 
(1 + K*) M = 2b 

where M i s  the bending moment. Introducing the  notation 

yields 

(1 + K*) M = 2bh2 cp - t) 
The graph f o r  the function p(h/p) can be eas i ly  constructed. It 

i s  thus always possible t o  f ind  the magnitude of the  curvature from the 
given moment M f o r  a given instant  of t i m e  and then, by solving inte- 
g r a l  equation (4.1), t o  determine the stress dis t r ibut ion.  

If the function c p ( c )  i s  a power function, the  problem i s  consi- 
derably simplified. Let c p ( x )  = a x p .  Then 

a 
2 + D  

Q ( X )  = - xp 
Dividing equation (4 .1)  by (4.2)  yields 
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whence 

u = - 
2bh2 

11 

(4.3) 

The d i s t r ibu t ion  of the  s t resses  i s  found t o  be independent of the time. 
We thus have i n  a cer ta in  sense a secondary creep although the  rate of 
deformation is  not constant as i s  clear from equation (4.2). 

The resu l t ,  equation (4.3), was obtained by Davis ( r e f .  3) from 
en t i r e ly  d i f fe ren t  considerations. 
hardening, using equation (2.4) i n  the  form 

He made use of the  theory of s t r a i n  

i = B p u  k t  

As he found d i f f i cu l ty  i n  accurately solving the  problem as thus 
posed, Davis ident i f ied  the  p l a s t i c  deformation with the  t o t a l  defor- 
mation and arr ived a t  a creep l a w  of the type (3.8) from which he readi ly  
obtained equation (4.3) i n  the  case of bending. The experimental v e r i f i -  
cation conducted by Davis well confirms the theore t ica l  r e su l t .  

Section 5. The generalization of any of the theories of creep t o  
the  three-dimensional case m y  be effected if  there  a re  taken as a basis  
the  equations of the  theory of small e las to-plast ic  deformations: 

U i 2 ai 
3 E i  EX., = - XY 3 E i  €xY a x -  u = -  (5.1) 

The change i n  volume a t  high temperatures may be neglected with 
greater  j u s t i f i ca t ion  than fo r  normal temperatures since, s t a r t i ng  from 
4000, the  Poisson coeff ic ient  f o r  s t ee l  assumes a value of the  order of 
0.45 t o  0.47. 

The in tens i ty  of the  s t resses  and the  s t ra ins  which are determined, 
following A. A. Ilyushin, as 
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2 ,  + (0, - 0,) 2 + 6 (Txy 2 + Tyz 2 + T,, z,&Ux - Uy) 2 + (ay - 2 ai = 

- dJ(€x - EY)2 + (EY - €,I2 + (Ez - + -  3 2  (Exy + EYZ 2 + €ZX) 3 2 
E i  - 

N 
c, 
UI w 

are  assumed t o  be connected w i t h  each other by the same relat ions as the 
s t r e s s  and s t r a i n  in the  one-dimensional problem. 

By the theory herein, 

The problem of a pipe under the action of an in te rna l  pressure i s  
very simply solved on the assumption of the absence of ax ia l  deformation. 
Let cry and Ue be the rad ia l  and transverse s t resses ,  E, = du/dr 
and the corresponding s t r a ins  expressed i n  terms of the r ad ia l  
displacement u, b and a the external and the in te rna l  radius of the 
pipe, and q the in te rna l  applied pressure. Since E x  = 0, there 
follows from the condition of incompressibility 

= u/r 

du u - + - = o  d r r  

whence 

where e is  an as yet undetermined funetion of time. Equations (5.1) 
give [NACA Reviewer's Note: 
i n  s ign appearing i n  the original has been corrected.] 

In  the following three equations, an error 

1 
ur - u - -  -8 
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% whence 

2 

ur - uo =3 
Substi tuting (5.3) i n  the equation of equilibrium 

dUr u - u 
- +  = o  dr r 

r 0 

yields 

Multiplying by (1 + K*), integrating from r = a, and noting tha t  

d 

. 
yield 

(1 + K*) u i  =cp(ci)  =q(f> 

(1 + K*)(u, + 9)  = - 

Setting 

J O  

gives 

S 

. 

For 
determining the function of time e is  obtained: 

r = b, ur = 0. From t h i s  condition, the in tegra l  equation for  

(5.3) 
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The case where 
i n  t h i s  case 

rp(x) = axp here too leads t o  considerable simplification; 

[NACA Reviewer's Note: The parameter a i n  ax@ i s  evidently being 
taken as 1.1 

From equation ( 5 . 5 ) ,  

1 (1 + K*)q = - ep 
p f i  . 

Dividing one equation by the other cancels the time function e on 
the  r ight  side.  The in tegra l  operator (1 + K*) likewise cancels and a 
time-independent l a w  f o r  the  s t r e s s  dis t r ibut ion is  obtained: 

The veloci t ies  a re  not constant and they a re  found from equation (5.6) 
where, i f  q i s  given, the  case reduces t o  quadratures and the  succes- 
s ive  determination of the function e from the graph. If e i s  given, 
the problem reduces t o  the solution of an in tegra l  equation f o r  which it 
i s  necessary t o  know the resolvent of the  kernel. 

Section 6. Proceeding t o  the  general case of the  three-dimensional 
problem, we r e s t r i c t  ourselves t o  the consideration of those processes 
i n  which the s t resses  vary simultaneously i n  proportion t o  a parameter 
),(t), while the s t r a ins  vary i n  proportion t o  a parameter Then p ( t ) .  

- - 
where ax, . . . E x  . . . a re  functions only of the coordinates. 
[NACA Reviewer's Note: The bars which appear above G~ and E X  i n  t h i s  
clause were incorrectly omitted i n  the or iginal . ]  Equations (5.1) give 

a 

- 
E - - 2  X 

h ( a x  - a )  = - D i  F 
3 E i  
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The s t resses  ai a r e  connected w i t h  the s t r a ins  by the  r e l a t ion  ( 5 . 2 ) .  

If cp(ci) i s  a power function 

Multiplying both s ides  of equation (6.1) by 1 + K'@ gives 
- 

(6.2) 

( 6 . 3 )  

[NACA Reviewer's Note: 
equation (6.3) appearing i n  the  original have been corrected.] 

Equations (6.3), of which only the  f irst  i s  wr i t ten  out, correspond t o  
the in t eg ra l  equation 

Errors i n  the subscripts on the  r igh t  s ide of 

8 (1 + K*) A = p P (6.4) 

and t o  a system of re la t ions  en t i re ly  agreeing w i t h  the  equations of the  
theory of small elasto-plast ic  deformation: 

. . . . . . . . . . . . . . . . . .  
where 

Systems (6.5) and (6.6)  are systems of equations of the  theory of 
secondary creep taken i n  a more general sense than the ordinary. 
rates are now no longer constant but variable since the fac tors  h and 
p 

The 

which depend on the time are obtained from the  in tegra l  equation ( 6 . 4 ) .  
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